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2Acquisition Civil Engineering, Space & Missile System Center, Los Angeles AFB, USA

ABSTRACT

Sonic boom excited sediment waves are investigated with a model of interacting wave fields comprising
water of finite depth and an elastic medium representingthe sediment. The latter is assumed to be uniform,
isotropic and semi-infinite in extent. The free modes are found to be dispersive, resulting in a finite (non-
vanishing) resonance speed range. The study recognizes the difference in the far-field behavior between the
excited resonance mode and the wave group of free modes: whereas the excited underwater wave of the
resonance mode propagates at the same speed as the sonic-boom air load and remains in the form of a mono-
chromatic wave train, the wave group of the free modes disperses into a wave packet and attenuate with
increasing distance and time. Examples of a sediment model of fine sand with sonic boom waves at two
flight Mach numbers are discussed. Differences and similarities between the present analysis and
Desharnais and Chapman's study [1] are noted.

RESUME

L'excitation d'ondes sedimentaires par Ie boom sonique est etudiee avec un modele de champ d'ondes com-
prenant de l'eau de profondeur finie et un milieu elastique representant Ie sediment. Ce dernier est suppose
uniforme, isotrope et d'etendu semi-infini. Les modes libres s'averent dispersifs, resultants une gamme finie
de vitesse de resonance non attenuee. L'etude identifie la difference dans Ie comportement du champ loin-
tain entre Ie mode de resonance excite et l'onde de groupe des modes libres: si l'onde sous-marine du mode
de resonance se propage a la meme vitesse que Ie boom sonique dans l'air et reste sous forme de train d'on-
des monochromatiques, Ie groupe d'ondes des modes libres sont disperses dans un paquet d'ondes et attenues
avec l'augmentation de la distance et Ie temps. Des exemples d'un modele de sediment de sable fin avec des
ondes de boomsonique a deux nombres de Mach de vol sont discutes. Des differences et les similitudes entre
l'analyse actuelle et les travaux de Desharnais et de colporteur [ 1 ] sont aussi reportes.

1. INTRODUCTION

Many aspects of sound propagation in water can signif-
icantly affect the impact analyses of man-made noise under-
water. [2,3]. This paper presents a model study of the tran-
sient, hydro-acoustic wave field in shallow water generated
by a sonic boom over water and the resulting elastic-acoustic
interaction that can excite sediment waves.

The problem of the underwater response to a sonic
boom wave was modeled by Sawyers with a flat air-water
interface [4] that has since been further elucidated [5], tested
[6], and applied extensively.[7,8]. For convenience,
Sawyers' model will be referred to as the "flat-ocean model".
Tacitly assumed in Sawyers' analysis is an ocean of infinite
depth not strictly applicable to the shallow coastal water.
Aside from the effect of an impermeable bottom boundary,
the interaction of a hydro-acoustic wave field with that of an
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elastic solid representing the sediment may excite seismic
waves underwater [9-14] and could produce noticeable
departures from Sawyers' prediction. Feasibility for sonic-
boom-excited sediment waves was examined in the
Desharnais and Chapman (D-C) paper [1] cited in the
Abstract; the over-pressure signals received during the field
test of a hydrophone array were identified to be disturbances
originated from a Concorde airliner over-flight. Figure 1
reproduces from the D-C paper the over-pressure waveforms
recorded at three depth levels and their comparison with the
flat-ocean model prediction in this case. Except for the
"ringing feature" on the downstream alluded to in Ref. [1],
temporal averages of the over-pressure records tend to sup-
port Sawyers' prediction, as are made apparent from Fig. 1,
even though the fluctuation/oscillation amplitudes are seen
to be unexpectedly large. The analysis in the D-C study [1]
employs a layered seismic model and indicates the existence
of a resonance velocity not far from the reported Concorde
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Figure 1. Overpressure waveforms recorded at three
depth levels and their comparison with Sawyers' Oat-
ocean model predicted for a Concorde airliner over-
flight, reproduced from Desharnais and Chapman's pa-
per [IJ.

flight speed. The study furnishes also certain spectral prop-
erties which appear to support the "ringing feature" men-
tioned earlier, although an alternative model based on an
interaction mechanism involving a wavy air-water interface
[15-18] could explain the ringing and other features of
Fig.l. The present study holds, nevertheless, that the seismic
interaction mechanism considered in the D-C paper ad-
dresses a new aspect of sonic boom underwater impact, and
should add valuable understanding to the broader problem
of sea-floor influence on underwater sound and noise. In the
present work, a simpler model is used to analytically deline-
ate the key interaction mechanism and to ascertain certain
unique features found in the D-C study.

Additional remarks on the present work and the related
studies are made below in Section 2 along with a description
of the model and assumptions used in the analysis. The
problem formulation is given in Section 3, followed by
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analyses of the wave-train problems in Section 4, where
certain distinctions from classical studies [9, 10, 11] are
noted, and the forced wave-train mode under a periodic
transient air load is delineated. The latter is to be used as a
generating function in the analysis in Section 5 for the more
general, compact, transient air load. Here, the excited reso-
nance mode as well as the transient response beyond the
resonance range are studied; the distinctly different far-field
behavior of the excited mode and the corresponding behav-
ior of the free-mode group are compared. In Section 6, ex-
amples illustrating excitation of resonance sediment waves
by an incident sonic-boom wave in and beyond the critical
Mach-number range are discussed. Concluding remarks
with further discussions are given in Section 7.

2. REMARKS ON THE MODEL

It is quite well known that the strong variation in shear
rigidity of the sediment material is an important elastic
property controlling sediment wave propagations [12, 14].
This was recognized in the D-C study [1], in which compu-
tations based on a layered model were made to simulate an
elastic sea bed, assuming a power-law variation of the
shear-wave speed with depth; the work accounted also for
the presence of a shallow water above the sediment, which
was included as one of the many layers in their computa-
tional study, As a paper complementing the D-C study, we
examine the effect of a finite water depth for a simpler
sediment model represented by a homogeneous, semi-
infinite elastic medium. The latter, as mentioned, is amend-
able to detailed, analytical enquiries on its seismo-acoustic
behavior under a transient, supersonic air load. The follow~
ing presentation will show that the simpler model can repro-
duce salient features similar to those in the D-C study which
may, perhaps, be better understood. The analysis shares
the same physical model used in the classical analysis of
underwater sound transmission over an elastic solid bottom
[12, 13]. Unlike the latter which concern mainly a wave
train in "free mode", the present analysis addresses wave
fields excited by an incident sonic boom as a compact air
load, and recognizes the distinct difference between the
free-modes in group and the excited mode found with the
transient air load.

A model with two spatial dimensions will suffice for
the present study, by virtue of the extremely high aspect
ratio generally found with sea-level sonic boom impact
zones [15-18]. Figure 2 depicts the two interfaces separat-
ing the air, the water, and the sediment media, the Cartesian
coordinates used, and together with some features of the
mathematical model. Here, the plane z = 0 is made to coin-
cide with the liquid-solid interface, while the plane z = -h is
identified with the air-water interface, Subscripts "1" and
"2" used in the sketch and in the following will refer to the
hydro-acoustic and the elastic media, respectively, while the
subscript "A" refers to the air above water,
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Figure 2. Schematic drawing depicting a planar hydro-
acoustic medium of depth h and a semi-infinite elastic
solid representing the sediment. In the coordinate system
shown, the water-sediment interface and the air-water
are identified at z = 0 and z = -h, respectively.

Implicitly assumed in Sawyers' theory as well as the
present study are an extremely low air-to-water density ra-
tio, PA/ PI << I, and an air-to-water sound speed ratio less
than unity, i.e. CA/c] < I , The first assumption makes the
changes caused by the sonic boom in underwater fluid mo-
tion and in the air-water interface geometry negligibly
small. The second assumption on sound speeds allows the
underwater wave field to be treated as that in a subsonic
flow, with the restriction that the Mach number MAof the
propagating sonic-boom wave field over water is less than
c]/ CA. The latter has the value 4.53 under standard condi-
tions. This restriction, I < MA < 4.53, will be observed
here, as in References 1,4-8, 15-18.

For the uniform isotropic media, Rayleigh and
Stoneley/Scholte waves [9-11] correspond respectively to
vanishing and infinite water depths, and are known to be
non-dispersive [14a,b] in that their propagation (phase)
speed do not depend on frequency/wave-number; this would
limit the free-mode excitation to one single speed for a
given set of sediment properties. Unlike these limiting
cases, however, the free mode in the finite-depth problem at
hand is dispersive, and there exists a non-vanishing (fmite)
speed range in which hydro-acoustic waves and sediment
wave trains can be excited by a compact, transient air load.
A finite and perhaps wider, critical speed range may, nev-
ertheless, be expected for sediments modeled with layered
or heterogeneous structure without the additional assump-
tion of a finite water depth, as in Reference l's model.

7 - Vol.31 No, 4 (2003)

3. GOVERNING EQUATIONS

The task of analyzing the interaction problem of two
spatial dimensions can be reduced to solving for three un-

known functions: the displacement potential <1> I of the

hydro-acoustic field, the scalar potential <1>2 associated
with the compressive-wave field and the horizontal compo-

nent of a vector potential '¥2 associated with the shear-

wave field of the elastic medium [12-14]. For the uniform
isotropic media considered, each of these functions are gov-
erned by its own acoustics-like equation

2 1 a2
V <1>1= 2~<1>],

Cl at

2 1 a2
V '¥2 = 2~ '¥2

Cs at

2 1 a2
V <1>2= 2~<1>2'C atp

(3.1 a,b,c)

where c] is the sound speed in water defined earlier; Cp

and Cs are the compressional (wave) speed and the shear

(wave) speed related, respectively, to the (Lame') compres-

sional and shear moduli A and f.1 , and the medium density

P

r+211 IEcp = p and Cs =fp
(3.2a,b)

With the local displacement vector in the elastic medium
represented by [13, 14]

d=V<1>2+VX'¥ (3.3)

the displacement continuity and the balance of the normal
and tangential stresses across the (impermeable) horizontal,
water-solid interface lead to three compatibility conditions
at the interface z = 0:

a<I>I 8<I>2 8'1'2-=-+-
8z 8z 8x

(3.4)

82

- PI at2 <1>]= A.z V2<1>2

(3.5)

(
82<1>2 a2'¥2

J+2f.12 ~- axaz
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0=

/l

[(

a2 a2

J

a2

]

--L --- '¥ +2-<1>
P2 ax2 aZ2 2 aXaZ 2

(3.6)

where the left-hand member of (3.5) is the over-pressure on

the water side, and <1>I is the displacement potential. The
latter is an integral of the velocity potential with respect to
time t.

At the air-water interface z = -h (refer to Figure 2), the
over-pressure in water must balance that of the air load
which can be assumed to be given by the known, incident
and reflected sonic boom waves. For the present study, it
suffices to consider three types of air loads at z = -h

a2
- PI z<1>I = 0at (3.7a)

a2 A

- PI -<1> = P U2a 2P, ei(ax-{J)I)

at2 I I 0

a2

- PI at2 <1>1= F(x - Ut)

(3.7b)

(3.7c)

pertaining to, respectively, the free mode, a transient sinu-
soidal air load, and a more general, non-sinusoidal, transient
air load. The latter includes the over-pressure from a sonic
boom. The propagation (phase) speed U of the air loads is
assumed constant, and 0) is aU. Results from the analysis
for the air load of a sinusoidal wave train, (3.7b), will be
used to generate solutions for the non-periodic, compact air
load of interest. Since a semi-infinite elastic domain has

been assumed,a vanishing <1>2 and '¥ 2 at large z corre-
sponding to the radiation condition will be required. With
the use of the complex exponential functions in (3.7b) and
in the following development, it is understood that these
potentials and other quantities of physical interest are to be
obtained from the real parts of the subsequent solutions.

The system of the three unknown functions <1> I' <1>2

and '¥ 2 are coupled through the interface compatibility

conditions at z = 0, (3.4)-(3.6). The partial differential

equations 3.1band 3.1c for <1>2 and '¥ 2 may also be cou-

pled through additional terms in the equations, if the elastic
moduli of the sediment were not uniform.

4. FREE AND FORCED WAVE TRAIN
MODES

Solutions for the free mode and for the wave train mode

Canadian Acoustics / Acoustique canadienne

forced by a sinusoidal air load of (3.7b) may be obtained in
the wave train form

l::H~J e;"('~J

(4.1)

The resulting ordinary differential equation (ODE) system

for the three unknowns ~I' ~2 and 'J!2' with the afore-

mentioned compatibility and boundary conditions, is no
more or less than that in the classical analysis for the subma-
rine wave guide modeled with an elastic sediment [13], also
in common with mathematical models used in studies of
submarine earthquakes, mud slides and underwater explo-
sions [13, 14]. The solutions sought and developed for the
present study differ however from those of Reference 13 for
reasons to be brought out shortly. The product of the wave
number and the water depth, ah, will be an important pa-
rameter in the analysis but was absent from analyses of
Rayleigh and Stoneley/Scholte waves [9-11].

The equations up to this point have been written in the
rest frame. The following analysis will be made in a moving
frame at the uniform horizontal velocity U. In this frame,
the foregoing equations are unchanged, except that

a2/at2 is replaced by

a2 a2 a2
-+2U-+U-
at2 axat ax2

while the exponential argument i(ax-O)t)in (4.1) is changed
to i(ax-Qt) with Q=Ua+O). The velocity of the reference
frame U is chosen to coincide with the phase velocity -ro/a
so that the argument in (4.1) may become independent of
time.

The underwater system admits solutions with "evanes-
cent behavior"

,( = A ell3lalz+ A e -113,alz't'l 1 2 (4.2a)

~p = Be -Ip pulz ,~s = Ce -IPsulz (4.2b, c)

for real values of

PI =~l-M~ ,Pp =~l-M~ ' Ps =~l-M;
(4.2d)

\
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Mp=-UjCp<l,I.e. for Mj=-Ulcj<l,

Ms =-U Ics <1.

It could admit "eff.qvescent" (propagating-wave) be-

havior like e:!:ilPlazif any of the ~s becomes imaginary, i.e.,
if any of the three Ms exceed one. From the interface
boundary conditions at z = 0 and z = -h, linear relations
among the four constants AI, Az, B, and C, can be ob-

tained. After eliminating A z and C, one arrives at

13 p

1(

1 - 2

)
. B + D . A =0

13, 2-M; BW I
(4.3a)

II + e -Z!Plalh + DBW J. Al =

Po -Iplalhe
PIUzaz

(4.3b)

where

DBW =-

2
- (4.3c)

1+ ~I E2M~4[4~s~p -(2-M;)]
I-'p PI

Note that DBW is a function ofU through Ms and the /3s.
The above result includes both the free and forced wave-

train modes; the constant Po in (4.3b) is set equal to zero
identically for the free modes.

Note that the surface air load (prescribed over-pressure)
on the air-water interface has been assumed, up to this stage,
to be a sinusoidal one

p'(x,-h;a) = pjU2a2 'Poeia.x (4.4)

Free Mode: Sediment Wave Train in Shallow Water

Unlike the Rayleigh and Stoneley/Scholte waves, for
which the phase and group velocities are independent of the
frequency or wave number, the free mode determined by

l+e-Ip,alh +DBW =0 (4.5a)

is dispersive in that its phase speed so determined will vary
with the wave number, or more precisely, the product of the
wave number and the water depth, ah . This leads to a non-
vanishing (finite) range of the free-mode propagation speed,
and thus a wider speed range for its excitation by a transient
air load (see below) than in the Rayleigh and Scholte waves.

9 - Vol. 31 No.4 (2003)

On the other hand, the dispersive property may produce a
far-field behavior of a group of free modes very different
from those of the non-dispersive Rayleigh and Stoneley
waves (to be explained below). Equation (4.5a) may be
more explicitly written in terms of the density ratio, the
three Mach numbers and the product ah as

-(2-M;) +4~I-M;~I-M~ -

(
EL

JM: ~1-M~ tanh~~,alh)
pz ~1-M1

(4.5b)

which is identical in form with that for the fundamental
(first) free mode of the water-channel wave guide with a
solid floor of uniform elastic properties [13]. It reduces to
the Rayleigh limit as ah ~ 0 and to the Scholte/Stoneley
limit as ah ~ 00. With a finite, non-vanishing h, the
phase speed of the free mode (through M], Mpand Ms) now
becomes a function of the wave number a. However, to be
a genuinely free mode of the wave-train form (4.1), the
wave number a and the propagation speed U must both be
real; this sets a limit on the range of U admissible to (4.5b).

Values of U (a) satisfYing the free-mode condition,

(4.5b), for real a will be called the free-mode speed; it will

be denoted by U FM(a), wherever such a distinction is
necessary. The wave field excited by a traveling air load at
the critical speed will be referred to as the resonance mode.

To be sure, U FM(a) is the phase speed of the free mode
observed in the rest frame. More significant, physically,

d
is - [a U FM(a)] which approximates the group velocity

da
in the far field and controls the evolution of wave packet
formed by a group of free modes, to be delineated more
fully in Section 5.

For a given density ratio PI/Pl, the critical speeds for
various different combinations of c], cpand Csmay be found
from (4.5b) for three kinds of combination of M], Mpand
Ms. The fITstkind is one with all three Mach numbers being
less than unity; however, the Mach number MAabove the
air-water interface must remain MA<4.53. The second M-
combination requires all the three Mach numbers to exceed
unity, which would require a MAvery much greater than
4.53 in most applications, since the compressional speed cp
of the sediment is normally not much lower than the water
sound speed Cl. The third combination requires M,>l, Mp
<1 and Ms < 1 (supersonic in water, and subsonic in solid).
The second and third kinds are not of great relevance to the
sonic boom impact study and will not be considered in the
subsequent analysis. (The third kind is similar to the Love
waves in an elastic solid and could be of relevance to impact
study of an intense explosion over a shallow sea.)

Canadian Acoustics / Acoustique canadienne



The admissible range of UFM,or (MA)FM,for the free
mode is determined by the upper and lower limits of the
hyperbolic tangent in (4.5b) and may therefore be inferred
from (4.5a) through

-2<DBw<-l (4.6)

From the free-surface condition (3.7a) and the solution
(4.2a), the underwater over-pressure field in the moving
frame is given by

, A [ 1~lalz ~21~lalh -I~lalz]
iro;

p= Ie -e e e (4.7)

There can occur, more often than not, free-mode wave
trains made up of a from a continuum wave-number range
allowed by (4.5b). Such a wave group from the free-mode
continuum is expected to undergo attenuation as it pro-
gresses (in time and space); this will be substantiated at the
end of Sec. 5.

Wave Train Forced By Traveling, Periodic Air Load

With (4.3b) for a non-vanishing Po, the constant Al of
the potential in (4.2a) is determined; Applying the pressure-
continuity requirement at the air-water interface (z = -h)
once again, the constant A2 of the potential may also be
obtained, yielding

, A fax
p =qe (4.8a)

and

A

( ) -1~lal(h+z)q z,a = e +
-I~lal(h-z) -21~lalh -1~lal(h+z)e -e .e

(1+ e -21~lalh+ D )EW

(4.8b)

where the constant Po has been taken to be unity, so that q
= 1 at the air-water interface z = -h, satisfying the prescribed
boundary condition there. The solution is regular as long
as the propagation speed U of the air load is not close to the
critical speed Vcr at which the denominator in (4.8b) van-
ishes.

5. RESPONSE TO MORE
MOVING AIR LOADS

GENERAL,

Solution as Fourier Integral

The product qeiax is an underwater solution to the sys-

tem with p' = eiax at z=-h, as is its weighted integral with

respect to the wave number a

Canadian Acoustics / Acoustique canadienne

1

5 [, eiro;q(z,a)F(a)da
(5.1 )

where F(a) is an arbitraryweightingfunction. The cor-

rect choice for F (a) is one that will allow the weighted

integral with respect to a to represent the over-pressure

field in water under a traveling load p'(x,-h). Since

q(z,a) approaches unity as z ~ -h, this boundary con-

dition simply requires that F( -a) be the Fourier trans-

form of the interface air load p'(x,-h) .

F(-a) =
1

-J2n [, eiro;p(x,-h)dx ==pea)

(5.2)

Thus, under the assumption that the Fourier integral of the
air load and the inverse Fourier transform of the product
qP both exist, the solution in question is, for -h < z < 0,

p'(x,z) =
1

-J2n [, e-iro;q(z,a)P(a)da
(5.3)

where q(z,-a)=q(z,lal) has been given earlier by
(4.8b) for the wave-train air load.

Rigid Bottom Result as Special Limit

Outside of the tree-mode speed range allowed by (4.6)

for the parameter DEw, the function q(z,-a) in (4.8b)

has no singularity and the p' integral is expected to attenu-
ate with increasing distance from the forcing air load, as in
the case of a rigid bottom. The latter case corresponds to
the limit of infinite compressive and shear speeds, in which

DEW vanishes. Equation (5.3) is reduced in this limiting
case to

p'(x,z) =
1

[ -iro; cosh ~lrlz
- e P a da
5 00 cosh ~llalh ( )

(5.4)

which represents an extension of Sawyers' [7] analysis to
shallow water and provides an alternative solution fonn to
the rigid sea-floor problem given earlier in References 17,
and18.

"
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Figure 3. Illustration of diagrams used for determining

of the air Mach number M A ==U / aA corresponding to

the free-modephase velocity UFM (a) for a wave num-

ber a through the function D BW(U) , which can also

be used to determine the specific wave number a. in an
excited resonance mode for a known air-load velocity U:

(a) DBW as function of M A' (b) DBW as function of

~lhlal.

PI/PZ =1.91, cp =1711m/s,and Cs =503m/s.

The example shown was computed from

The Excited Resonance Modes

For a traveling air-load at speed U which falls inside the
range allowed by (4.6), the integration path of (5.3) en-
counters the pole singularity of q(z,a) at the particular wave
number a * corresponding to U in the tree-mode require-
ment (4.5b). This particular wave number a * is therefore a

11 - Vol.31 No.4 (2003)

function of the air-load velocity U, and will appear in solu-
tion pairs to the nonlinear algebraic equation (4.5b) for a
given U. Examination of the relation between the expo-
nential function in arguments /3, a, h and the DBw(U) of
(4.5a) indicates that only a single pair of real a *= aFM(U)
in the form of a *=:tla *1is possible for a given U (cf. Fig.
3). This fact provides the basis for the following analysis.
The analysis will also make use of the fact the the function
p '(x,-h) prescribed for the transient air load at the air-water
interface is a real function of x.

Essential to the contributions trom the poles is the be-
havior of the denominator of q(z,a) (cf. (4.8b»

!'! ==1+ DBW + exp(-2h~1 r '1) (5.5)

whose behavior near a * differs according to whether a * is
positive or negative. The function q(z, a) in the vicinity

of the two poles a =::!:a may thus be represented by

~ g.(z,a) 1 1
qr::::. -

2~lh I+DBW a =fa
(5.6a)

where g(z, a) is the limit fori a 1---+a

g.(z, a) =

hm g = 2e-Zplha sinh(~ taCh + z))
lal-->a

(5.6b)

Recognizing that P(-a) is the complex conjugate of PraY, the
excited overpressure field in water ( -h < z < 0 ) may be re-
expressed with the help of (5.6a,b) around the two poles, as¥

'
( )

-
r;

g.(z,a) sign(x) *p x, z - - -
2 ~lh 1+ DFM

RP [iP(a)e-iax] +

1 oof -iax
Q( ) J

r;:;- e z,a;a ua
,,21(; -00

(5.7a)

where "RP" stands for the Real Part and

Q(z,a;a) = q(z,lal)P(a) +

g.(z,a) 1 (P(a) - P(a))
2~lh I+DBW a -a a +a

(5.7b)

¥ In deriving (5.7a), use was made of the identity

1 oo

f
e-iax .

r;
.

- -da=-l -slgnx.
J2n -00a 2
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The existence of the inverse Fourier transfonn of Q
requires regularity of P(a) along the real axis of a. The two
poles in question are thus removed from the remaining inte-
gral. Note that the overpressure p' in (5.7a) is to be ob-
tained from the real part of the equation's RHS. For large
water depth p' of(5.7) may be seen to diminish as l/h. On

the other hand, for small water depth, p' of (5.7) does not

diminish with h, owing to the fact that both I1q and g.
vanish linearly with h (for -h < z < 0).

The above result represents the resonance mode in wa-
ter excited by a traveling air load. Examples most befitting
to this description ate those found in sonic boom over flat
(non-wavy) water, for which the air load is readily deter-
mined. A standard example of this kind will be examined in
section 6.

Excited Far Field

At large distance (x» 1) from the air load, the integral
in (5.7), which is the inverse Fourier transfonn of Q, van-
ishes for a wide class of Q which is absolutely integrable
with respect to a.[20] The latter condition can be met by a
pea) which is regular along the real axis of a. Thus as

Ix! ~ 00, p' of (5.7) assumes the fOnDof a free mode at a

specific wave number pair a = :ta corresponding to the air-
load speed U. Rewriting (5.7) for coordinates in the rest
frame, the overpressure in water far from the air load be-
comes

'
( u) /rrg*(z,a) *

p X,z, ~-f2 ~/h

iP(a )e;UIX-u, I
sign(x-Ut)RP{ }

1 + DFJf

where a and DFM are functions of U, and g. (z, a) is a
function of both U and z (for the same set of sediment prop-
erties). The monochromatic character of this far-field reso-
nance mode has a special significance for its non-
attenuating nature. This behavior must be considered dis-
tinct from the shallow water free modes which are allowed
to occur arbitrarily over a wide range of a. The combined
effect of the free-mode wave group is expected to result in
attenuation with distance and time, and warrants a closer
examination to be made presently.

(5.8)

Free-Mode Group: Comparison

Physical realization of the free modes of (4.5)-(4.7)
depends on the initial data or a prior production process
(such as a finite-energy release) which nonnally involves a
broad wave-number band. With the (rare) exception of a
(very) narrow-band a-distribution, the wave group of the
free modes, instead of (4.7) for a single mode, takes the
fonD
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p'=

1 00A(a),eia[X-UFM(a)l]e-P\hlal.

.J2rc _!Sinh[P\h(l + z / h)rl]da

(5.9)

for an arbitrary integrable A(a). The far field behavior of
this integral along each ray of constant xlt is detennined by
the stationary phase, tantamount to the group velocity

d
-[aU FM(a)]=xl t =11
da

(5.10)

and thereby attenuates as the inverse square root of Ixlor t
[19-21]. More specifically, the non-coherent free-mode
group (5.9) disperses and transfonns itself into a packet of
wavelets, each of which propagates along a "ray" of con-
stant xlt with a fixed wave number/frequency at the group
velocity, and attenuates according to the "cylindrical
spreading rule" [19-21].

'
(

'
) E. . *

P x,z ,t ~ ~expza.
v2In."tl

{rx-V F.,Ja. )t] + : (sgnn:)}

where the asterisk denotes the stationaryvalue a =a *

(5.11a)

satisfying (5.10),

Q=aUFM(a), Q"=d2Qlda2
and

(5.11b,c)

E ==A(a)e-Plh~1 *

sinh[Plh(l + z)rlJh

(5.l1d)

Owing to their dispersive property, the free modes of
(4.5)-(4.7) occurring in group differ significantly in the far-
field behavior from the free mode of the Rayleigh wave or
the Stoneley wave. To the latter, the far field of the excited
resonance mode (5.8) is also similar, but differs in having a
broad-band resonant U-range (4.6) that neither the Rayleigh
nor the Stoneley wave enjoy.

6. EXAMPLES: SONIC BOOM EXCITED
SEDIMENT WAVES

Sonic Boom N-wave as Air Load

A standard fonD of p '(x,-h) in sonic boom prediction
method is that of an N-shape. In tenDSof the nonnalized x-
variable based on the sonic boom signature length (say, L'),
it can be written as ---
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p'(x,-h) = (1- 2x)I(x)I(1- x) (6.1a)

where I(~) denotes the unit-step function of ~' and the

overpressurep , is normalized by its maximum/peak value.
The normalized x ancrP', together with the dimensionless z
as well as the Fourier variable a are all be made dimen-
sionless with L' in the example study below.

The Fourier transform ofp '(x,-h) in this case is
1

pea) = *
J2nUa)

[(eia - 1)(1+ ~) - 2eia ]
la

(6.1b)

which is finite and regular (containing no pole) at the ori-
gina = 0, and vanishes as 11a for largea . These be-
haviors assure the existence of the integral solution (5.3).

Sediment Properties Selection

The range ofU permitted by (4.5b) for resonance, and

its existence, depends on the density ratio PI / pz and the
characteristic speeds Cl.cpand Cs. More critical is the sedi-
ment shear speed Cswhich is the lowest among the three
characteristic speeds and controls the 4thpower of Mson the
RHS of (4.5b). Resonance may be expected to occur when
U and Csare comparable. Three sediment samples are se-
lected from measured and computed properties of mud and

sand to show the variety in PI / pz ' cp and CS(Cf. Table

8.2.1 Reference 22 and shown below). The sound speeds in
air and water in the model study are taken to be CA=331
m/sec and Cl=1500 m/s, respectively. The range ofU or the
air Mach number MApermitted by (4.5a,b) corresponding to
(4.6) for resonance, can be determined from the listed den-
sity ratio and the characteristic speeds for sediment models
I, II and III as

1.24 < MA < 1.44,
0.52 < MA < 0.56,
4.52< MA < 4.53 (6.2 a, b, c)

respectively. The following discussion will focus on exam-
ples illustrating underwater responses of sediment Model I

to sonic booms at speeds within and outside the above MA
range. Model II would support sediment wave trains for
moving air load at subsonic speed as well. Interestingly,
resonance may still be found even with shear speed as high
as in the sediment model III, although the resonance-speed
range is extremely narrow, as indicated by (6.2c). Examples
with sediment models II and III will not be included for
discussion below.

Supersonic Over-flights at MA = 1.5 and MA= 1.36

The case of MA=1.5 outside the resonant range (6.2a) is
first examined. To render the results more relevant, the ref-
erence length scale L' for x, z and h can be taken to be
100m, which is not far from the sonic boom signature of the
Concorde airliner. With the set of constants assumed for

data set I, we have pz/ PI =1.91, M1 =0.331, M p =0.290,

M s =0.987, PI=0.944, Pp=0.957, Ps =0.160, and

Dsw =-15.41. In addition, the water-layer depth is taken to
be twice the signature length, i.e. h = 2, a depth of 200 m.

The waveform at the sea level for an incident N-wave is
shown in Figure 4a where the normalized maximum over-
pressure was set equal to 0.33. The underwater waveform at
mid channel (i.e. z = -1) with the rescaled p '(x) for the N-
wave is shown in Figure 4b. Not shown for this case is the
over-pressure on the sediment boundary (z =0), of which the
magnitude is uniformly less than 10-3of the surface value at
x = -h. As expected, no evidence of interaction involving
the sediment medium can be found in this case. In fact, the
result differs little from that of a rigid, flat-bottom wall and
appears to be very similar to results obtained for rigid bot-
tom walls given in References 7, 8, and 16.

Next, we examine the results for M A= 1.36which falls

within the MA-range of (6.2a) for which PZ/PI =1.91,

M 1=0.300, Mp =0.263, Ms =0.895, PI=0.954,

Pp=0.965, Ps =0.445, Dsw =1.09, and h=2. The latter
corresponds to a water depth of 200 m. The normalized
overpressure waveforms at the water surface z= -h = -2, at
mid channel z = -h/2 = -1, and on the bottom z = O.are pre-
sented in Figures 5a, 5b, and 5c, respectively. Unlike the

results shown earlier for M A=1.5, undiminished sinusoidal
oscillations at large distances in the form anticipated by

Table 1. Sediment Characteristics. (From Reference 22)

PZ/PI cp(m/s)

I

II

Very fine sand (continental terrace)

III

Clay (Abyssal hill)

Uralite Basalt (Kolan rock)

13 - Vol. 31 No.4 (2003)

Cs (m/s)

1.91

1.42

1711

1491

503

195

3.06 6580 3660
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Figure 4. An example of hydro-acoustic response of the
water-solid system to an incident sonic boom at

M A = 1.50 which is outside the resonance-speed range

1.24 < M A < 1.44 for a normalized water depth h=2,

Pl/P2 =1.91, cp =1711m/s,and Cs =503m/s;

overpressure are shown at (a) sea level (z=-h=-2), (b)
mid channel (z=-h/2=-I). Result at sediment boundary
(z=O)not shown (Cf. text).

(5.8) appear at both the lower depth levels. The periodic
oscillation in overpressure on the sea floor (z = 0) is seen to
have twice the amplitude as that at mid-channel (z = -h/2 = -
I), indicating clearly that the monochromatic, non-
attenuating disturbances has been generated from the inter-
action at the lower boundary and radiate upward as if from a
new acoustic source at the bottom. One may apply the re-
sults, for example, to the case with a maximum over-
pressure p' at the sea level equal exactly to 0.33 pounds per
square foot (pst), the oscillatory p' amplitude at the mid
channel and channel bottom would accordingly be close to
0.017 psf and 0.031 psf, respectively. These magnitudes
correspond to sound levels close to, and slightly higher than,
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Figure 5. An example of sonic-boom excited sediment
waves in a water-solid system same as in the proceeding

figure, except M A = 1.36 which falls within the reso-

nance speed range (1.24 < MA < 1.44): (a) sea level(z
= -h = -2), (b) mid channel(z = -h/2 = -I), and (c) sedi-
ment boundary (z = 0).

120 dB (re I flPa), which may be compared with the levels
of recorded whale calls in the inftasound range [2, 3].
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Further Discussion

Two features of interest may be noted in Figures 5a, 5b,
and 5c. The noticeably long wave length shown in Figures
5b, and 5c, which is ')...==2n /a , normalized by the sonic
boom signature length, indicates that the excited wave
length is nearly ten times the signature length. This should

not be a surprise, however, after examining howa *(U) , or

more precisely, how 2~Iha *, is determined from a given

U in the range - 2 < DBW < -1 (cf. Figure 3). A typical

U well within the admissible range is seen to give an a *

pair corresponding to a 2 ~Iha * in the unit-order range,
i.e. to a wavelength

')...*::::: 4n~lh (6.3)

This is numerically large, indeed, and suggests that the

')...*nearly ten (10) in length shown in Figures 5b, and 5c

must have resulted from a 2 ~1h Ia * Ivalue comparable to

1/3. Therefore the apparently high numerical value compa-
rable to that of (6.2) is not unexpected in the shallow water
far field (lxl>>1). It is unclear if similarly long wavelengths
were found in the corresponding results in the D-C study
[I], since data were not furnished for far (x»l) locations.

In the near field [x=O(l)] on the other hand, a charac-
teristic wave length of unit order is expected.. This expec-
tation finds support in the mid-channel result (z=1) of Fig-
ure 4b, where a relatively weak oscillation with a unit-order
wavelength comparable to that of the sonic boom signature
occurs in x=O(I), while the solution is expected to approach
the prescribed N-profile as z tends to the air-water interface
z= -h. In the D-C study, it was reported that their spectral
solution in the higher wave-number end appears to amplify
with distance from the sediment boundary (z=O).The mid-
channel result at x=O(l) and related observation noted
above could provide an explanation of the seemingly pecu-
liar feature of the result in Reference 1 noted above, even
through substantial differences exist between their model
and the present one.

Unresolved among the reasons/cause for the differences
between measurement records and model predictions are the
absence of "ringing" on the upstream side and the presence
of a large pressure over-shoot on the downstream side,
which was revealed evidently in Figurela (reproduced from
Figure 5a of Reference I).

7. CONCLUDING REMARKS

Sonic boom excited resonant interaction of the hydro-
acoustic wave field and the elastic wave field of the ocean

15 - Vol.31 No.4 (2003)

sediment is studied with a model of flat, uniform shallow
sea over a homogeneous (uniform), semi-infinite, elastic
solid. The finite depth h of the shallow water renders its
free propagation mode dispersive when observed in a mov-
ing frame, allowing a family of free modes and a non-
vanishing range of resonance speed for a traveling air load.
For a rigid ocean bottom, the need for correcting Sawyers'
theory [4] for applications to shallow coastal water is obvi-
ous, and this needed modification appears explicitly as a
special limit in the present analysis [cf. (5.4)].

With suitable combination of sediment density, com-
press ional and shear speeds, the critical speed range of su-
personic over-flight for the resonance interaction can be
found. The hydro-acoustic field structure and the resonance
condition (when the flight speed falls within the tree-mode
speed range) have been analytically studied for the far and
near fields. Computed results for over-flight speeds within
and outside the resonance-speed range were examined.
Distinctions of the resonance mode analyzed from the Ray-
leigh and Stoneley waves and from the corresponding D-C
study, have been noted. Significant differences between the
shallow-water free modes and the excited resonance mode
with regard to their far-field behavior have been recognized.
The examples studied suggest not only that, with low
enough shear-wave speed on the sediment, the excitation
event in question is realizable, but also that the undersea
sound level can be comparable to, or even higher than, that
of the recorded intrasound from whale calls [2,3].

Similar behavior of the excited resonance mode can be
expected of the D-C analysis; the layered sediment model
assumed therein would introduce additional dispersive ef-
fects, as in most sediment wave studies involving heteroge-
neous media [14]. It is of interest to note that the values of

Cp = 1600 m/ sand P2 / PI = 1.8 assumed in the D-C

study were rather close to the corresponding values 1711
m/s and 1.91 of the sediment model (set I) used for the ex-
amples of Fig 4a,b. An important difference lies, of course,
in the layer-approximation simulating the non-uniform
shear-speed distribution assumed in Reference I, namely,

Cs = 160(z)o.3, where Z is in meters. Ifa typical shear
speed value is to be taken from this power law at the repre-
sentative location, say, Z =50m, one would obtain

c s = 517 m / see , not far from the 503 m/sec in the pres-

ent example. The Concorde airliner in question was esti-

mated to cruise at Mach 1.75, corresponding to M A at the

air-water interface of M A =1.5. The latter is not too far
from the upper limit 1.44 for excitation for the present
model (6.la). As the discussion in Section 6 would sug-
gest, several outstanding discrepancies between measure-
ments and model predictions may not be resolved com-
pletely within the frame work of the flat-water model.

In conclusion, we consider the model of sonic-boom
excited sediment waves proposed originally by Desharnais
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and Chapman [1] to have physical merit; the phenomenon is
worthy of more critical studies for a wider class of sonic
boom impact problems. Among the latters are the exten-
sion of a shallow-water analysis to account for the shear-
speed non-uniformity, as well as a study of the evolution
process of the steady-state free modes. New field measure-
ments and laboratory studies will be necessary to resolve
issues of the earlier and new measurements and to help in
developing a viable prediction model. A fuller presentation
of this work is given in a report entitled "A Model Study of
Sonic Boom Excited Sediment Waves," available on the
author's website [23]..
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